
Tetrahedron Letters,Vol.30,No.46,pp 6371-6374,1989 0040-4039/89 $3.00 + .O0 
Printed in Great Britain Pergamon Press plc 

ELECTROCHEMICAL PREPARATION AND REACTIONS OF UNMASKED ACYL-ANION SYNTHONS I 

Kunihisa Yoshida, Ei-ichi Kunugita, Masaru Kobayashi, and Sei-ichi Amano 

Department of Chemical Engineering, Faculty of Engineering Science, 

Osaka University, Toyonaka, Osaka 560, Japan 

Summary: Organic halides can be converted into carbonyl compounds by electro- 
reducing a mixture of them and Fe(CO) 5 in acetonitrile first and adding an 
electrophile to this mixture. 

A synthetic operation may often require transfer of an acyl group as it 

were a nucleophilic acyl anion. While acyl anions are not commonly syntheti- 

cally accessible, there are a variety of reagents which are synthetically 
2 

equivalent to acyl anions, permitting the umpolung of carbonyl reactivity. 

Means of acquisition of organometallic acyl-anion-transfer reagents, by addi- 

tion of carbanion donors such as organolithium compounds 3 and Grignard rea- 

gents 4 to metal carbonyls, or from reaction of metal carbonyl anions with al- 
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Fe(CO) 5 

2e/-CO Fe(CO) 2- RX/CO 
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r i ~ RCOFe (CO) 4 
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(i) 

kyl halides 5'6 invites us to the straightforward electroreduction of a pair 

of an organic halide and a metal carbonyl. It has been known that, while 

electroreduction of aLkyl halides leads to carbanions by way of anion radicals 

and/or radicals, 7 metal carbonyls are electrochemically reduced to relevant 
8 

anions. 

The reaction between 1-bromopentane and Fe(CO) 5 was examined in detail. 

First of all, suitable solvent-electrolyte systems were sought by using di- 

vided cells, and the best results were achived with the acetonitrile (AN)-- 

Et4NOTs system as shown in Table. 9 When nonhalide electrolyte anions were 

used, sparingly soluble compounds formed coatings on the anode surface and 

H + 
RX ÷ Fe (CO) 5 2e • 1 • RCHO (2) 

led to a progressive increase in the cell voltage. Bu4NI as an anodic addi- 
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Table. Conversion of 1-Bromopentane to Hexanal a 

Electricity d Conversion Yield e 

Solvent Electrolyte Cell b Additive Cathode c F/mol % % 

AN Et4NBr D None SS 2.0 88 71 

AN Et4NOTs D f SS 2.0 83 68 

AN Et4NOTs D f Pt 2.0 82 67 

AN Et4NOTs D f Cu 2.0 82 66 

AN Et4NOTs D f Ni 2.0 79 65 

AN Et4NOTs D f Pb 2.0 88 63 

AN Et4NOTs D f Hg 2.0 74 58 

AN Et4NOTs D f C 2.0 76 52 

AN Bu4NCIO 4 D f SS 2.0 83 57 

AN Bu4NBF 4 D f SS 2.0 86 54 

DMF Et4NOTs D f SS 2.0 92 33 

NMP Et4NOTs D f SS 2.0 69 14 

AN Et4NOTs U None Pt 2.0 37 20 

AN Et4NOTs U None Pt 1.0 15 9 

AN Et4NBr U None Pt 2.0 42 23 

a n_C5H11Br, 0.005 mol; Fe(CO) 5, 0.005 mol; Pt anode; current, 0.05 A. 

Proton donor, 2N HCI. b D, divided; U, undivided, c SS, steinless steel; 

C, vitreous carbon, d At present a character of denominator can not be 

specified between n-C5H11Br and Fe(CO) 5. e Based on n-C5H11Br used. 
f 

Bu4NI. 

tive was effective to avoid such a situation. Cathode materials had little 

effect on the yield of product. The use of an undivided cell remarkably de- 

pressed conversion. 

In conversion of 1-halogenated pentanes into hexanal, the order of 

product yield became RBr > RI > RCI. 

The cathodically generated iron acylate anions ~ react with another al- 

kyl halide to afford ketones. For example, the iron caproylate anion gave, 

after quenching with methyl iodide, 2-heptanone in 37% yield. When equimolar 

amounts of benzyl bromide and Fe(CO) 5 were electroreduced and then treated 

with aqueous 2N HCI, dibenzyl ketone, toluene, and dibenzyl were formed in 

53, 27, and I% yield, respectively. 10 In this case, the second alkylation 

occurs during the electroreaction to afford the symmetrical ketone. 

The preparation of hexanal from 1-bromopentane illustrates a typical 

procedure. The reaction was carried out in a divided cell with a stainless 
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steel plate cathode having an area of 18 cm and a Pt plate anode having the 

same area. The catholyte was made up of 50 mL of AN that contains 1-bromo- 

pentane (5 mmol), Fe(CO) 5 (5 mmol), and Et4NOTs (3.5 g, 11.6 mmol). The ano- 

lyte was an AN solution that contains the same supporting electrolyte and the 

additive. During the electroreaction, the cathode and anode compartments 

were magnetically stirred under N 2 and a current of 50 mA was passed for 

about 5 h at a room temperature. The reduction was terminated after passage 

of 2 F/mol of added substrate. 11 After hydrolytic workup with aqueous 2N 

HCl, GLC analysis showed the presence of hexanal (68% yield based on 1-bromo- 

pentane used; 83% yield based on the substrate unrecovered) as the only 

product, together with a small amount of the bromide unreacted. 

Recently, Petit and coworkers have made a brief report of electrochemical 
12 

conversion of organic halides into aldehydes using Fe(CO) 5. They used an 

undivided cell, THF solvent, and acetic acid as s source of formyl hydrogen. 

Under the conditions, the alkyl iodide was more suitable to the organic sub- 

strate. 

The mechanism and scope of this reaction will be reported elsewhere. 
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